skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Morzan, Uriel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Expanding the range of Protospacer Adjacent Motifs (PAMs) recognized by CRISPR-Cas9 is essential for broadening genome-editing applications. Here, we combine molecular dynamics simulations with graph-theory and centrality analyses to dissect the principles of PAM recognition in three Cas9 variants - VQR, VRER, and EQR - that target non-canonical PAMs. We show that efficient recognition is not dictated solely by direct contacts between PAM-interacting residues and DNA, but also by a distal network that stabilizes the PAM-binding domain and preserves long-range communication with REC3, a hub that relays signals to the HNH nuclease. A key role emerges for the D1135V/E substitution, which enables stable DNA binding by K1107 and preserves key DNA phosphate locking interactions via S1109, securing stable PAM engagement. In contrast, variants carrying only R-to-Q substitutions at PAM-contacting residues, though predicted to enhance adenine recognition, destabilize the PAM-binding cleft, perturb REC3 dynamics, and disrupt allosteric coupling to HNH. Together, these findings establish that PAM recognition requires local stabilization, distal coupling, and entropic tuning, rather than a simple consequence of base-specific contacts. This framework provides guiding principles for engineering Cas9 variants with expanded PAM compatibility and improved editing efficiency. 
    more » « less
    Free, publicly-accessible full text available September 4, 2026
  2. CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat and associated Cas9 protein) is a molecular tool with transformative genome editing capabilities. At the molecular level, an intricate allosteric signaling is critical for DNA cleavage, but its role in the specificity enhancement of the Cas9 endonuclease is poorly understood. Here, multi-microsecond molecular dynamics is combined with solution NMR and graph theory-derived models to probe the allosteric role of key specificity-enhancing mutations. We show that mutations responsible for increasing the specificity of Cas9 alter the allosteric structure of the catalytic HNH domain, impacting the signal transmission from the DNA recognition region to the catalytic sites for cleavage. Specifically, the K855A mutation strongly disrupts the allosteric connectivity of the HNH domain, exerting the highest perturbation on the signaling transfer, while K810A and K848A result in more moderate effects on the allosteric communication. This differential perturbation of the allosteric signal correlates to the order of specificity enhancement (K855A > K848A ~ K810A) observed in biochemical studies, with the mutation achieving the highest specificity most strongly perturbing the signaling transfer. These findings suggest that alterations of the allosteric communication from DNA recognition to cleavage are critical to increasing the specificity of Cas9 and that allosteric hotspots can be targeted through mutational studies for improving the system’s function. 
    more » « less
  3. Protein around hemes acts as a temperature sensor for environmental changes to control conductivity of cytochrome OmcS nanowires. 
    more » « less
  4. null (Ed.)